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Abstract—Research at the University of Michigan’s Mobile 
Robotics Lab aims at the development of an accurate 
proprioceptive (i.e., without external references) position 
estimation (PPE) system for Mars Rovers. Much like other 
PPE systems, ours uses an inertial measurement unit (IMU) 
comprising three fiber-optic gyroscopes and a two-axes 
accelerometer, as well as odometry based on wheel 
encoders.  

Our PPE system, however, is unique in that it does not use 
the conventional Kalman Filter approach for fusing data 
from the different sensor modalities. Rather, our system 
combines data based on expert rules that implement our in-
depth understanding of each sensor modality’s behavior 
under different driving and environmental conditions. Since 
our system also uses Fuzzy Logic operations in conjunction 
with the Expert Rules for finer gradation, we call it Fuzzy 
Logic Expert navigation (FLEXnav) PPE system.  

The paper presents detailed experimental results obtained 
with our FLEXnav system integrated with our Mars Rover 
clone Fluffy and operating in a Mars-like environment. The 
paper also introduces new methods for wheel slippage 
detection and correction, along with preliminary experimen-
tal results. 
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1.   INTRODUCTION 
Proprioceptive position estimation (PPE), more commonly 
known as dead-reckoning, is widely used for measuring the 
relative displacement of mobile robots.  

Many conventional high-end dead-reckoning systems for 
ground-vehicles (typically, mobile robots) appear to be 
implemented according to a common approach: A 6-axes 
INS is fused with odometry using a Kalman Filter technique. 
Kalman Filters use statistical error models [1][2][3] to 
predict the behavior of sensor components. We believe that 
this approach is not ideal for odometry, because the 
statistical models can’t represent well single “catastrophic” 
events – and the encounter of a large bump or rock is indeed 
catastrophic for an odometry-based system.  

For many years UM’s Mobile Robotics Lab has been 
developing an approach that favors in-depth physical 
understanding of sensors and their associated error sources 
over the statistics-based Kalman Filter methods. Our basic 
philosophy is that many error mechanisms can be defined 
more specifically and accurately by expert reasoning. The 
result of our effort is a proprioceptive position estimation 
system called Fuzzy Logic and Expert rule-based navigation 
system (FLEXnav).  

In addition to our unique FLEXnav method for data fusion, 
our system employs innovative measures for improving 
position estimation accuracy. The paper here describes 
measures that were optimized for 6-wheel-drive/6-wheel-
steer vehicle with a rocker-boogie suspension system. For 
simplicity, we will refer to mobile platforms of this design 
as “Mars Rovers” throughout this paper. Well-known Mars 
Rovers are Rocky 8 and FIDO – all developed at the Jet 
Propulsion Lab (JPL – see, for example, [4]). The accuracy-
enhancing measures currently employed in our system are 
listed below: 

I. Redundant Encoders – Odometric measurements typically 
require encoder data from one wheel on each side of the 
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robot. However, if wheels are slipping, then only a single 
non-slipping wheel is needed to perform odometry 
computations – the needed encoder data of the wheel on the 
other side can be recovered from gyro data. Numerous 
expert rules in our system help determine, which wheel is 
most likely to be the one that was slippage-free in a given 
sampling interval.  

II. All-wheel Slippage detection (AWSD) – This group of 
three individual measures compares data from different 
encoders with (1) each other, (2) gyro data, and (3) motor 
current data, to determine whether all wheels were slipping 
in a given sampling interval. If so, then odometry becomes 
ineffective and an AWSD flag is raised. 

III. Fuzzy Logic Encoder Compensation (FLEC) – The 
FLEC methods aims at extracting quantitative information 
about the extent of wheel slippage from the All-wheel 
Slippage (AWS) indicators, and then uses that information 
to reduce odometry errors that were caused by AWS. 

In order to develop our system and validate its performance, 
we built “Fluffy” – a kinematic equivalent to JPL’s Rocky-8 
and FIDO Mars Rovers. Experimental results from our 
FLEXnav system implemented on Fluffy and driving 
through a Mars-like, 3-D landscape are presented in 
Sections 3. Section 4 introduces further enhancements to the 
basic FLEXnav system, and presents experimental results. 

2. THE FLEXNAV SYSTEM 
A block diagram of the FLEXnav sensor suite, as 
implemented on Fluffy, is shown in Figure 1. The system 
comprise of these components: 

1× KVH E-core RA2100 fiber optic gyro with analog 
output. This gyro is used for measuring yaw rate.  

2× KVH E-core RA1100 fiber optic gyro, with analog 
output. These gyros are used to measure roll and pitch rates. 

2× ICSensors model 3140-002 accelerometers, used for 
measuring tilt angles.  

The sensor system is mounted in an aluminum case on top 
of Fluffy. Fluffy is equipped with six wheel encoders, six 
steering potentiometers, and potentiometers for measuring 
all relevant angles within the rocker-boogie mechanism and 
between the rocker-boogie mechanism and the chassis.  

A detailed description of our method for attitude and 
position estimation within the FLEXnav system is presented 
in [5]. That paper also explains in detail how data from the 
different sensor modalities of the basic FLEXnav system is 
fused using expert rules and fuzzy logic. In order to avoid 
duplication, we refer the reader to that paper rather than 
repeating this material here.  

Instead, we focus in this paper on novel methods for 
improving the dead-reckoning accuracy of planetary rovers, 
and especially Mars Rovers. We also present comprehensive 
experimental results from the basic FLEXnav system as well 
as from FLEXnav combined with some of the dead-
reckoning improvements discussed in Sections 3 and 4. 

Experimental results with the basic FLEXnav system 

In order to evaluate the performance of the basic FLEXnav 
system installed on Fluffy, we conducted three sets of 
experiments. Table I summarizes the features of each set. 
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Figure 1: The University of Michigan-built Fluffy and a block diagram of the FLEXnav dead-reckoning system. 
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In all three experiments Fluffy was driven at 6 cm/sec under 
human remote control along a near-rectangular path in our 
indoor sandbox. Each run consisted of three uninterrupted 
loops, resulting in a total travel distances of D = 40 to 45 
meters per run, and a total of 1,080 degrees of turning. 
Running in both clockwise (cw) and counter-clockwise 
(ccw) direction is extremely important. If a mobile robot is 
tuned and tested in only one direction, then it is highly likely 
that the key parameters are tuned in such a way that 
dominant error sources compensate for each other, and great 
accuracy is seemingly achieved. However, if the robot is run 
in the other direction, then those error sources no longer 
compensate for each other but rather add up, resulting in 
huge errors. A detailed analysis of this subject is given in 
[6]. 

In each run the robot started at a marked location (0, 0) and, 
after three laps, was returned exactly to that location. Upon 
return to the starting position we measured the discrepancy 
between the actual robot position and the position reported 
by the FLEXnav system. The resulting discrepancies are the 
so-called “return position errors.” For each experiment 
Figure 4 shows a plot of the x- and y-values of the return 
position error for each individual run.  

Table I also lists for each experiment and direction (cw and 
ccw) a set of average of absolute errors, Xe and Ye. For 
example, if for a certain experiment we performed n runs 

and measured return position errors (x1, y1), (x2, y2)… (xn, yn) 
at the end of each run, then,  

 ∑
=

=
n

i
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Lastly, Table I also shows the absolute error, 
22

ee YXE += , for each of the three experiments and the 
same error expressed as a percentage of total travel distance 
D, E[%] = 100 E/D. 

Similar experiments were conducted with a Mars Rover by 
Baumgartner et al. [3]. The error achieved in their system 
was 0.72% of total travel distance. However, they did not 
run the experiment in both cw and ccw direction, as we 
believe is necessary for conclusive results. Also, the 
experimental conditions described in their paper do not 
specifically mention any significant slopes or rocks and no 
photograph is provided. For this reason we assume that the 
conditions were similar to those of our Set #0, or perhaps 
somewhere between our Set #0 and Set #1.  

In Section 4 we describe a new experiment under the exact 
same conditions as Experiment #2, but this time with our 
method for slippage correction. We will compare the results 
of that experiment with the results of Experiment #2 as 
reported here. 

 
Figure 2: Actual 3-D trajectory of the robot during a 
typical 3-lap run under conditions of Experiment #2.  

 
Figure 3: Fluffy driving up a steep slope (at point ‘A’ in 
Figure 2).  

Table I: Experimental conditions and results for the three sets of experiments described in this section. See Figure 3 for 
detailed results. Note: “cw” stands for “clockwise” and “ccw” stands for “counter-clockwise.” 

Experiment Set #0 Set #1 Set #2 
Terrain features No slopes at all, flat horizontal sand. A 

few fist-size rocks. No observed wheel 
slippage 

One elevation of ~30 cm, some 
observed wheel slippage, a few rocks. 

Two steep slopes 15 and 35 cm 
height, a few fist-sized rocks. 
Substantial slippage. See Figure 2and 
Figure 3. 

Number of runs 4×cw, 4×ccw 6×cw, 6×ccw 6×cw, 6×ccw 
Total travel per run, D  43 m 45 m 40 m 

ccw (Xe, Ye) = (14.4 cm, 7.2 cm) 
E = 16.1 cm; ; E[%] = 0.37% 

(Xe, Ye) = (44.2 cm, 17.6 cm) 
E = 47.6 cm; E[%] = 1.06% 

(Xe, Ye) = (19.6 cm, 38.6 cm) 
E = 43.3 cm; E[%] = 1.08% Average of 

absolute errors. 
E and E[%] cw (Xe, Ye) = (23.1 cm, 13.3 cm) 

E = 26.7 cm; E[%]= 0.63%  
(Xe, Ye) = (26.6 cm, 40.9 cm) 
E = 48.8 cm; E[%]= 1.08% 

(Xe, Ye) = (9.0cm , 72.2 cm) 
E = 72.8 cm; E[%] = 1.82%  

A 
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3. MEASURES FOR IMPROVING ODOMETRY 
In this section we present several innovative measured for 
improving odometry in mobile robots in general, and in 
Mars Rovers especially.  

Redundant encoders and over-constrained drive systems 

Rocky or FIDO-type Mars Rovers have six drive wheels 
equipped with encoders. Since usually only two or even just 
one (if operating in conjunction with a gyro) encoder(s) are 
needed for odometry, the six encoders on these Mars Rovers 
are redundant. With redundant encoders the control program 
can select the single encoder or the encoder pair that 
produced the most accurate readings in a given sampling 
interval. Our expert rules-based technique for doing so is 
explained in detail in [7] and we omit the detailed 
explanation here.  

Because of their six steerable drive wheels, Mars Rovers are 
also over-constrained. In over-constrained vehicles the 
actual speeds and steering angles of the wheels have to 
match perfectly. Even small discrepancies will result in the 
wheels “fighting” each other. This phenomenon can be 
observed in many early Sports Utility Vehicles (SUVs) in 4-
wheel drive mode on high-traction ground. However, when 
the SUV drives on slippery ground, such as sand, then this 
effect is less noticeable. This is because the wheels can slip 
easily to accommodate discrepancies in their speeds and 
steering angles. One method for reducing this effect and the 
associated wheel slippage in over-constrained mobile robots 
is to modify the control algorithm with the goal of reducing 
discrepancies in wheel speeds. We have developed such an 
algorithm, called Cross-coupled Control. This algorithm, 
originally developed by Borenstein and Koren [8], was 
refined later on and is also described in detail in [7]. An 
alternative solution for the wheel synchronization problem 
was shown by Baumgartner et al. [3], who used a voting 
scheme to synchronize the six wheels of JPL’s FIDO Rover.  

All-wheel slippage detection  

The greatest enemy of odometric accuracy is wheel-
slippage, and vehicles that travel on sandy surfaces are 
particularly at risk. If only some of the wheels are slipping 
while others are gripping, then the above-mentioned Expert 
rule-based method for choosing data from multiple 
redundant encoders can help in selecting the most accurate 
source. Even if only one wheel is gripping and we manage 
to identify that wheel, odometry is “saved” because we can 
derive linear displacement from that encoder and rotation 
from the gyro. What is therefore of greatest concern is all-
wheel slippage (AWS).   

In this section we discuss several methods for the detection 
of AWS conditions. The rational is that it generally 
beneficial to know that AWS has occurred (for a variety of 
obvious reasons), and, more interestingly, that we may be 

Set #0 

Set #1 

TargetTarget

Set #2 

Figure 4: Return Position Errors plotted for the three 
sets of experiments. 
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able to reduce odometry errors due to AWS, once we know 
that AWS has occurred. 

In order to detect AWS, we developed a comprehensive set 
of what we call “AWS indicators.” The output of an AWS 
indicator can be a binary flag that indicates that AWS has 
occurred, or it can be a fuzzy quantity that expresses our 
certainty that AWS occurred. Fuzzified outputs from 
multiple indicators can be combined through fuzzy logic. 

The most effective AWS indicators we found are: 

Encoder Indicator (EI) – compares encoder readings with 
each other.  

Gyro Indicator (GI) – compares encoder readings with those 
of the gyro that measures rate-of-turn around the z-axis. 

Current Indicator (CI) – monitors motor currents, which are 
roughly proportional to the external torque applied to each 
wheel. 

Acceleration Indicator (AI) – compares encoder readings 
with readings from an accelerometer mounted in 
longitudinal direction. Since this indicator is not effective 
for slow-moving Mars Rovers, where accelerations resulting 
from wheel slippage are extremely small and of poor signal-
to-noise ratio, we omit further discussion of this indicator. 

In the remainder of this section we discuss each indicator in 
some detail and offer experimental results. 

Encoder Indicator (EI) – Figure 5 shows a schematic 
diagram of the wheels in a Mars Rover. A coordinate system 
is attached to the vehicle so that the Y-axis of the vehicle 
coordinate system is aligned with the vehicle’s longitudinal 
direction. 

Each wheel i,j has a linear velocity vector Vi,j and a steering 
angle φi,j (index i = Front, Center, or Rear, and index j = left 
or right). φi,j is measured between the longitudinal direction 
of the vehicle YV and the steering direction of the wheel. 
The projection of the speed vector Vi,j onto the Y-axis is 
called “longitudinal velocity component” V’i,j. 

On smooth terrain the speed vector V’i,j of the three wheels 
on either side should be equal, and our hypothesis is that 
unequal speeds in the three wheels of a side suggest wheel 
slippage. In order to express this hypothesis mathematically, 
we set up a fuzzy logic framework that computes the degree 
of confidence we have in the wheel encoders to be slippage 
free. Table II shows the Fuzzy Logic rules used for this 
purpose; this table must be applied for both the right and the 
left side of the rover. Figure 5 shows the output of the fuzzy 
logic system of the Encoder Indicator for (a) a high-traction 
and (b) a high-slippage terrain. 

Gyro Indicator (GI) – This method aims at detecting wheel 
slippage by comparing encoder data with gyro data. The 
motion of a rigid body in space can always be seen a pure 
rotation about a so-called Instantaneous Center of Rotation 
(ICR), as shown in Figure 5. The ICR may change from 
moment to moment. For straight-line motion the radius from 
the ICR to each wheel is of infinite length.  

ICR
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Figure 5: Nomenclature for wheel velocities in Mars Rovers 

 
(a) 

 
(b) 

Figure 6: Output of the fuzzified Encoder Indicator for different terrains (blue lines). The black lines show the smoothed 
output. a. High traction terrain, no slippage. The AWS flag was raised 23% of the time.  b. Sloped, sandy terrain causing lots 
of slippage. The AWS flag was raised 82% of the time. For binary output, the AWS flag is raised for output below 0.5.  

Table II: Fuzzy Logic rules for the Encoder Indicator 
R 
u 
l 

e 

Input:  
Difference in longitudinal 
speeds between 

Output: Confidence in encoder 
reading (low = wheel slipping; 
high = wheel gripping) 

# Front- 
Center 

Front- 
Rear 

Center- 
Rear Front Center Rear 

1 Small Small Small High High High 
2 Small Small Large High Med. Med. 
3 Small Large Small Med. High Med. 
4 Small Large Large Med. Med. Low 
5 Large Small Small Med. Med. High 
6 Large Small Large Med. Low Med. 
7 Large Large Small Low Med. Med. 
8 Large Large Large Low Low Low 
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We can compute the rate-of-turn of the vehicle from the 
Front, Center, and Rear encoder pair, according to 

 
bT

cosdcosd ji,ji,ji,ji,
i Enc,

ϕϕ
πω

⋅−⋅
= 2  (2) 

Where  

di,j  - distance traveled by the left and right wheel of wheel 
pair i  

b  -  distance between the left and right wheel of a wheel 
pair  

T  -  sampling interval 

We can now compare each of the three ωEnc,i with the rate-
of-turn measured by the z-axis gyro, which we consider the 
ground truth in this approach. If no slippage occurred in a 
wheel pair, then one can expect good correspondence 
between the rates-of-turn derived from the encoders of that 
wheel pair and the gyro. Poor correspondence suggests 
wheel slippage. 

Table III shows the output of the GI fuzzy system. We have 
not yet begun developing fuzzy logic rules that allow 
combining the output of the GI with that of the EI. For now 
we are only looking at a binary output in the form of what 
we call the “AWS flag”: when the fuzzy logic output is 
below a certain threshold (thus indicating a high likelihood 
for AWS), the AWS flag is raised.  

Results can be further improved by taking into account the 
momentary pitch of the robot. When the pitch angle is large, 
then there is a greater likelihood that wheels will be 
slipping. We use this simple expert rule to modify the 
threshold that determined when the AWS flag is raised.  

We defer the presentation of experimental results for the GI 
and the “GI + expert” indicator to Figure 9 (further below), 
where these results will be shown both separately and in 
combination with those of the Current Indicator, which is 
discussed next.  

Current Indicator (CI) – The Current Indicator (CI) aims at 
detecting AWS through the use of the well-established 
physical model of rover-terrain interaction mechanics. 
Wheel-terrain interaction has been shown to play a critical 
role in rough terrain mobility (Bekker, 1956; Wong, 1993). 

Wheel slippage on sandy terrain occurs when the shear 
applied to a given terrain exceeds the maximum amount of 
shear that terrain can bear, defined according to the 
Coulomb-Mohr soil failure criteria (see Figure 7) as: 

 ( )ϕtanσcAF MaxMax ⋅+⋅=  (3) 

where: 

c, ϕ –  characterize the behavior of the terrain and are 
defined as cohesion and internal friction angle, re-
spectively 

A  –  wheel contact patch, which is a function of wheel 
geometry and of the weight acting on the wheel 

σMax –  is the maximum normal component of the stress 
region at the wheel-terrain interface (Figure 7). 

For Mars-like sand, the values for the soil parameters can be 
found in [10]: c = 1 kPa and ϕ = 30°. 

Equation (3) defines the maximum force (and thus torque) 
that the sandy ground can apply to the wheel while the 
wheel is still gripping. Since the current consumption of a 
motor is proportional to the applied torque, it follows that 
there is a maximum current, Islip, that signifies the onset of 
wheel slippage. 

We determined Islip,i empirically for each wheel pair i. To 
account for the relatively large variations in the relationship 
between wheels slippage and motor current, we defined a 
“red zone” for motor currents. The red zone has a width of 
±∆I = 20% and is centered around Islip,i. Thus, the condition  

 Islip,i - ∆I < Ii,j < Islip,i + ∆I (4) 

where Ii,j is the current absorbed by the motor of wheel i,j 
suggests possible wheel slippage. If and only if all six 
wheels meet condition (4) is the AWS flag raised. We 

 
Figure 7: Wheel-soil interaction model (adapted from [9]).

Table III: Fuzzy Logic rules for Gyro Indicator 
R 
u 
l 
e 

Input:  

GyroiEnc, ωω −  

Output: Confidence in 
wheel-pair encoder reading 
(low = wheel slipping;  
high = wheel gripping) 

# Front Center Rear Front Center Rear 
1 Small Small Small High High High 
2 Small Small Large High High Low 
3 Small Large Small Med. Low Med. 
4 Small Large Large Low Low Low 
5 Large Small Small Low High High 
6 Large Small Large Low Med. Low 
7 Large Large Small Low Low Low 
8 Large Large Large Low Low Low 
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should note that motor currents higher than Islip,i + ∆I are 
possible, for example when a wheel tries to rolls up a rock.  

The approach above is quite simplistic, while the true 
relationship between motor currents and wheel slippage is 
complex and not well researched. However, the purpose of 
our work was to develop a framework for different AWS 
indicators, and for that our less accurate empiric approach is 
sufficient. As in the case of the GI, we have not yet 
developed a set of fuzzy logic rules that allow combining 
the output of the CI with either that of the GI or that of the 
EI. 

Experimental results with the Gyro and Current Indicators 

In order to test the effectiveness of the GI and CI we 
conducted the experiment shown in Figure 8. Fluffy was 
commanded to follow a 4-meter straight path on sand at a 
speed of 6 cm/sec. On that path we had created two sand 
mounds, each about 20 cm high. The original sensor signals 
and the output of the indicators for one such run are plotted 
in Figure 9.  

Figure 9a shows the sensor signals used in the GI. The black 
line is the ground truth, provided by the gyro. The blue, 
green, and cyan lines are the rates-of-turn computed by the 
front, center, and rear encoder pairs, respectively. When the 
output of the fuzzy logic engine of Table III goes below a 
certain threshold, then the gyro-based AWS flag is raised. 
This is shown by a magenta dot in Figure 9c. Because many 
of the dots are very close to each other, they may look like a 
solid line.  

Figure 9b shows the currents measured in the left motor of 
the center axis. Whenever that current is in or above the 
shaded area, the condition of Eq. (4) is met and slippage of 
that wheel is likely. When Eq. (4) is met for all six motors, 
then the current-based AWS flag is raised. This flag is 
shown as the blue dots in the bottom graph.  

Installed in our sandbox is an absolute position measure-
ment device that uses four ultrasonic receivers at the corners 
of the sandbox and a star-like formation of four ultrasonic 

transmitters mounted on Fluffy. Within the confined area of 
our sandbox this system provides absolute position 
information in real-time and with sub-centimeter accuracy. 
From this ground truth data we can easily determine when 
the rover was experiencing AWS: the speed measured by the 
absolute position sensor is no longer equal to the nominal 
speed of the rover. When this condition is detected, the 
ground truth AWS flag is raised, as indicated by the 
continuous red line in Figure 9c. 

We can thus compare the accuracy of the GI and the CI 
AWS flags to the ground truth flag. For this experiment we 
found that the GI flagged AWS correctly 38% of the time. 
The CI flagged AWS correctly only 18% of the time. When 
the two flags were logically OR-ed, the indicators were 
correct 51% of the time. The percentage of false positives 
(warning of AWS when there actually was no AWS) was 
10%. 

As mentioned above, we did not yet combine the Encoder 
Indicator with the GI and CI. We believe that this 
combination and some tuning of the parameters will produce 
significantly better results than those presented above. 

4. FUZZY LOGIC ENCODER COMPENSATION  

If AWS Indicators can tell us that there is all-wheel 
slippage, then perhaps they can also provide some indication 
about the extent of slippage. Our philosophy behind this 
question is this: If a rover detects all-wheel slippage 
according to the methods described above, then the control 
software has three options: 

1. Discontinue odometry, stop motion, and void its 
proprioceptive position estimation, because it is ren-
dered useless through the slippage.  

2. Continue odometry as usually, disregarding the fact that 
wheels were slipping and that the odometry data was 
faulty. 

3. Continue odometry but make adjustments using all 
available knowledge. 

We believe Option 3 is the best choice, because we think 
that knowledge of vehicle tilt, together with the quantitative 
analysis of some of the AWS indicators, will produce better 
results than Options 1 and 2. For example, it stands to 
reason that if AWS is flagged while going uphill, then actual 
vehicle speed will be less than nominal. That is, even though 
encoder pulses come in at their nominal rate, each pulse now 
represents less forward motion than under nominal 
conditions. Thus, a more accurate estimate can be produced 
if slippage-induced encoder inaccuracies are compensated 
for by software, based on knowledge of tilt and estimates of 
slippage.  

Sand 
mounds
Sand 
mounds

 
Figure 8: A 4-meter path with two sand mounds was used 
to test the Gyro and the Current Indicators.  
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In order to test this approach we used the fuzzy logic 
inference engine for the Encoder Indicator discussed in 
Section 3, according to Table II and Figure 5. We call the 
quantified output of the Encoder Indicator “Encoder 
Trustworthiness” (ET). The ET value is normalized between 
0 and 1 and higher values suggest that we trust the output to 
be free of AWS. 

The ET can then be applied to the encoder data that was 
corrupted by all-wheel slippage. In practice, this is done by 
defining a compensation function: 

 D* = DeCF     (5a) 

With 

 (5b) 

where 

D*  – corrected travel distance 
De  – travel distance reported by encoder 

CF  – correction factor 
SIGN  – determined by the pitch angle of the robot: if pitch 

is positive, then SIGN is negative 
K  – empirically determined constant 
Figure 10 illustrates this process in its most general form, 
that is, with all indicators contributing to the encoder 
compensation. Currently, however, only the EI is 
contributing.  

In order to test the utility of this approach, we re-ran 
Experiment #2 as described in Section 2, under the exact 
same conditions as described in Table II.  

A plot of the return position errors is shown in Figure 11. 
Table V shows the quantitative results of this experiment, 
labeled “Set  #3 (with FLEC)” compared against the results 
of the original Experiment #2 (without FLEC). A is evident 
from these results, FLEC reduced errors by about 40% in the 
high-slippage experiment. 

5. CONCLUSIONS 

 
Figure 9: Effectiveness of the Gyro and Current indicators during the 4-meter traverse of the sand mounds in Figure 8.  
a. Rover rotation computed from front (blue), center (green), and rear (cyan) axis encoder pairs, as well as from the gyro 
(black); b. status of the AWS flag based on gyro indicator (magenta), current indicator (blue), and the  Gyro OR current 
indicator (cyan). The red line shows ground truth. 
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Figure 10: Ultimately envisaged implementation of the Fuzzy Logic Encoder 
Compensation (FLEC) method. Currently only the EI is being used for encoder 
compensation. 
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In this paper we presented position estimation results from 
our Fuzzy Logic Expert Rule navigation (FLEXnav) dead-
reckoning system, implemented on a Mars Rover. 
According to theses results our system is at least equal in 
performance to a comparable, Kalman Filter-based 
navigation system described in the scientific literature. It is 
impossible to make a more accurate comparison because the 
experimental conditions are insufficiently documented in the 
literature.  

Besides the basic FLEXnav system, we introduced several 
measures aimed at improving dead-reckoning accuracy in 
Mars Rovers. We described in detail the function of three 
all-wheel slippage (AWS) Indicators that compare readings 
from different sensors in order to detect AWS. Although we 
have not yet completed the merging of these indicators, the 
results obtained to date and presented here clearly show the 
feasibility of this approach.  

We also presented a novel method called “Fuzzy Logic 
Encoder Compensation” (FLEC). FLEC compensates for 
AWS-related odometry errors by adjusting encoder output 
in proportion to quantified AWS indicator output. The 
single large-scale experiment that we performed to date 
shows a reduction in errors of 30-50% over conventional 
position estimation.  
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